Modules of Classes and Examinations, 2019-20

B.Sc. (General) in Physics

Semester-I

➢ Total 75 Marks

> Hiralal Bhakat College, Nalhati

- **Core Course CC2A** Mechanics
- ▶ 40 Marks for Semester-end-Examination[#] (will be organized by University)
- > 20 Marks for practical (will be organized by College in general and Department in Particular)
- 10+5=15 Marks for Internal Assessment (will be organized by College in general and Department in Particular)
- > 10 Marks for Class Test/ Assignment/ Seminar
- ➢ 5 Marks for Attendence

Attendence: 50% & above but below 60% - 2 Marks Attendence: 60% & above but below 75% - 3 Marks Attendence: 75% & above but below 90% - 4 Marks Attendence: 90% & Above - 5 Marks

InternalAs	Component 1	Component 2
sessment		
Weightage	5 Marks	
Number of	5	1.Vectors:
Questions		Vector algebra, Scalar and vector products,
Date	03-12-2019	Derivatives of a vector with respect to a parameter.
Time	12pm	2. Ordinary Differential Equations:
Syllabus		1st order homogeneous differential equations. 2 nd
	1.Vectors:	order homogeneous differential equations with
	Vector algebra, Scalar and	constant coefficients.
	vector products, Derivatives	3.Laws of Motion:
	of a vector with respect to a	Frames of reference. Newton's Laws of motion.
	parameter.	Dynamics of a system of particles. Centre of Mass.
	2. Ordinary Differential	4. Momentum and Energy: Conservation of
	Equations:	momentum. Work and energy. Conservation of
	1st order homogeneous	energy. Motion of rockets.
	differential equations. 2 nd	5.Rotational Motion:
	order homogeneous	Angular velocity and angular momentum. Torque.
	differential equations with	Conservation of angular momentum.
	constant coefficients.	.Gravitation:
	3.Laws of Motion:	6. Newton's Law of Gravitation. Motion of a particle
	Frames of reference.	in a central force field (motion is in a plane, angular
	Newton's Laws of motion.	momentum is conserved, areal velocity is constant).
	Dynamics of a system of	Kepler's Laws (statement only). Satellite in circular
	particles. Centre of Mass.	orbit and applications. Geosynchronous orbits.
	4. Momentum and Energy:	Weightlessness. Basic idea of global positioning
	Conservation of momentum.	system (GPS).
	Work and energy.	7. Oscillations:
	Conservation of energy.	Simple harmonic motion. Differential equation of
	Motion of rockets.	SHM and its solutions. Kinetic and Potential Energy,
	5.Rotational Motion:	Total Energy and their time averages. Damped

Angular velocity and angular	oscillations.
momentum. Torque.	8. Elasticity:
Conservation of angular	Hooke's law - Stress-strain diagram - Elastic moduli-
momentum.	Relation between elastic constants - Poisson's Ratio-
	Expression for Poisson's ratio in terms of elastic
	constants-Work done in stretching and work done in
	twisting a wire-Twisting couple on a cylinder -
	Determination of Rigidity modulus by static torsion -
	Torsional pendulum- Determination of Rigidity
	modulus and moment of inertia .
	9. Special Theory of Relativity:
	Constancy of speed of light. Postulates of Special
	Theory of Relativity. Length contraction. Time
	dilation. Relativistic addition of velocities

Name of	Md Ashik	Md Ashik
Teacher(s)		
Number of	62 (Tentative)	125(Tentative)
Classes		
Component 2	:	
➤ 40Ma	rks for Semester-end-Examination (v	will be organized by University)
> Answ	er 5 questions out of 8 carrying 02 m	marks each = $5 \times 02 = 10$ marks
Answer 5 questions out of 7 carrying 03 marks each = $5 \times 03 = 15$ marks		
Answer 03 questions out of 05 carrying 5 marks each = $03x = 15$ marks		
Whole Syllabus of CC 2A		
$\blacktriangleright Practical (Mechanics) = 20 Marks$		
Laboratory Note Book: 05 Marks		
Viva-voce: US Marks		
Experiment: 40 Marks (1 his 40 marks will be transformed into 10 Marks)		
A project File (Laboratory Note Book), comprising one exercise each is to be submitted.		nprising one exercise each is to be submitted.

Modules of Classes and Examinations, 2019-20

B.Sc. (GENERAL) IN PHYSICS

Semester-III

Hiralal Bhakat Colllege, Nalhati

Core Course 2C : Thermal physics and Statistical physics

- Total 75 Marks
- ➢ 40 Marks for Semester-end-Examination[#] (will be organized by University)
- > 20 Marks for practical (will be organized by College in general and Department in Particular)
- 10+5=15 Marks for Internal Assessment (will be organized by College in general and Department in Particular)
- > 10 Marks for Class Test/ Assignment/ Seminar
- ➤ 5 Marks for Attendence

Attendence: 50% & above but below 60% - 2 Marks Attendence: 60% & above but below 75% - 3 Marks Attendence: 75% & above but below 90% - 4 Marks Attendence: 90% & Above - 5 Marks

Internal	Component 1 (C ₁)	Component 2 (C ₂)
Assessment		
Weightage	5 Marks	1.Laws of Thermodynamics: Thermodynamic
Number of	5	Description of system:
Questions		Zeroth Law of thermodynamics and temperature.
Date	16-12-2019	First law and internal energy, conversion of heat
Time	12:30pm	into work, Various Thermodynamical Processes,
Syllabus	1.Laws of Thermodynamics:	Applications of First Law: General Relation
	Thermodynamic Description of	between CP & CV, Work Done during Isothermal
	system:	and Adiabatic Processes, Compressibility &
	Zeroth Law of thermodynamics	Expansion Coefficient, Reversible & irreversible
	and temperature. First law and	processes, Second law & Entropy, Carnot's cycle &
	internal energy, conversion of	theorem, Entropy changes in reversible &
	heat into work, Various	irreversible processes, Entropy-temperature
	Thermodynamical Processes,	diagrams, Third law of thermodynamics,
	Applications of First Law:	Unattainability of absolute zero.
	General Relation between CP &	2. Thermodynamic Potentials:
	CV, Work Done during	Enthalpy, Gibbs, Helmholtz and Internal Energy
	Isothermal and Adiabatic	functions, Maxwell's relations & applications -
	Processes, Compressibility &	Joule-Thompson Effect, Clausius-Clapeyron
	Expansion Coefficient,	Equation, Expression for (CP – CV), CP/CV, TdS
	Reversible & irreversible	equations.
	processes, Second law &	3.Kinetic Theory of Gases:
	Entropy, Carnot's cycle &	Derivation of Maxwell's law of distribution of
	theorem, Entropy changes in	velocities and its experimental verification, Mean
	reversible & irreversible	free path (Zeroth Order), Transport Phenomena:
	processes, Entropy-	Viscosity, Conduction and Diffusion (for vertical
	temperature diagrams, Third	case), Law of equipartition of energy (no
	law of thermodynamics,	derivation) and its applications to specific heat of
	Unattainability of absolute	gases; mono-atomic and diatomic gases.
	zero.	4. Theory of Radiation:
	2. Thermodynamic Potentials:	Blackbody radiation, Spectral distribution,
	Enthalpy, Gibbs, Helmholtz	Concept of Energy Density, Derivation of Planck's
	and Internal Energy functions,	law, Deduction of Wien's distribution law,
	Maxwell's relations &	Rayleigh-Jeans Law, Stefan Boltzmann Law and
	applications - Joule-Thompson	Wien's displacement law from Planck's law.
	Effect, Clausius-Clapeyron	5. Statistical Mechanics:

Equation, Expression for (CP –	Phase space, Macro state and Micro state,
CV), CP/CV, TdS equations.	Entropy and Thermodynamic probability,
	Maxwell-Boltzmann law - distribution of velocity -
	Quantum statistics - Fermi-Dirac distribution law -
	electron gas - Bose-Einstein Distribution law -
	photon gas - comparison of three statistics.

Name of	Md Ashik	Md Ashik
Teacher(s)		
Number of	60 (Tentative)	125 (Tentative)
Classes		

Component 2 :

- ➢ 40Marks for Semester-end-Examination (will be organized by University)
- Answer 5 questions out of 8 carrying 02 marks each = 5 x 02 = 10 marks
 Answer 5 questions out of 7 carrying 03 marks each = 5 x 03 = 15 marks
- Answer 5 questions out of 7 carrying 05 marks each = 5 x 05 = 15 marks
 Answer 03 questions out of 05 carrying 5 marks each = 03x 5 = 15 marks
 Whole Syllabus of CC 2C
- Practical (Statistical Methods in Geography) = 20 Marks Laboratory Note Book: 05 Marks
 Viva- voce: 05 Marks
 Experiment: 40 Marks (This 40 marks will be transformed into 10 Marks)
- A project File (Laboratory Note Book), comprising one exercise each is to be submitted.

Skill Enhancement Course – SEC 1

- ➢ Total 50 Marks
- ▶ 40 Marks(written exam) for Semester-end-Examination[#](will be organized by University)
- 10 Marks for Class Test/ Assignment (will be organized by College in general and Department in Particular)

Internal	Component 1 (C ₁)	Component 2 (C ₂)
Assessment		
Weightage	5 Marks	
Number of Questions	To be announced	1.Fossil fuels and Alternate Sources of energy Fossil fuels and Nuclear Energy, their imitation
Date	16-12-2019	energy sources. An overview of developments in
Time	12:30pm	Offshore Wind Energy, Tidal Energy, Wave energy
Syllabus		systems, Ocean Thermal Energy Conversion, solar

	1.Fossil fuels and Alternate	energy, biomass, biochemical conversion, biogas
	Sources of energy: Fossil	generation, geothermal energy tidal energy, Hydro
	fuels and Nuclear Energy,	electricity.
	their imitation, need of	2. Solar energy: Solar energy, its importance,
	renewable energy, non-	storage of solar energy, solar pond, non convective
	conventional energy	solar pond, applications of solar pond and solar
	sources. An overview of	energy, solar water heater, flat plate collector,
	developments in Offshore	solar distillation, solar cooker, solar green houses,
	Wind Energy, Tidal Energy,	solar cell, absorption air conditioning. Need and
	Wave energy systems,	characteristics of photovoltaic (PV) systems, PV
	Ocean Thermal Energy	models and equivalent circuits, and sun tracking
	Conversion, solar energy,	systems.
	biomass, biochemical	3. Wind Energy harvesting: Fundamentals of Wind
	conversion, biogas	energy, Wind Turbines and different electrical
	generation, geothermal	machines in wind turbines, Power electronic
	energy tidal energy, Hydro	interfaces, and grid interconnection topologies.
	electricity.	2. Ocean Energy: Ocean Energy Potential against
	2. Solar energy: Solar	Wind and Solar, Wave Characteristics and
	energy, its importance,	Statistics, Wave Energy Devices.
	storage of solar energy,	3. Tide characteristics and Statistics, Tide Energy
	solar pond, non convective	Technologies, Ocean Thermal Energy, Osmotic
	solar pond, applications of	Power, Ocean Bio-mass. (2Lectures) Geothermal
	solar pond and solar energy,	Energy: Geothermal Resources, Geothermal
	solar water heater, flat	Technologies.
	plate collector, solar	4. Hydro Energy: Hydro power resources, hydro
	distillation, solar cooker,	power technologies, environmental impact of
	solar green houses, solar	hydro power sources.
	cell, absorption air	5. Piezoelectric Energy harvesting: Introduction,
	conditioning. Need and	Physics and characteristics of piezoelectric effect,
	characteristics of	materials and mathematical description of
	photovoltaic (PV) systems,	piezoelectricity, Piezoelectric parameters and
	PV models and equivalent	modeling piezoelectric generators, Piezoelectric
	circuits, and sun tracking	energy harvesting applications. Electromagnetic
	systems.	Energy Harvesting: Linear generators, physics
	3. Wind Energy harvesting:	mathematical models, recent applications .
	Fundamentals of Wind	6. Carbon captured technologies, cell, batteries,
	energy, Wind Turbines and	power consumption .
	different electrical	7. Environmental issues and Renewable sources of
	machines in wind turbines,	energy, sustainability
	Power electronic interfaces,	
	and grid interconnection	
	topologies	
Name of	Md Ashik Mondal	Md Ashik Mondal
Teacher(s)		
Number of	60 (Tentative)	120 (Tentative)
Classes		

[#]Component 2:

- ▶ 40Marks for Semester-end-Examination (will be organized by University)
- Answer 5 questions out of 8 carrying 02 marks each = $5 \times 02 = 10$ marks
- Answer 5 questions out of 7 carrying 03 marks each = $5 \times 03 = 15$ marks
- Answer 03 questions out of 05 carrying 5 marks each = 03x 5 = 15 marks
- Internal assessment 10

Coordinator Science Wing Hiralal Bhakat College

Janton S.

Teacher- in- Charge Hiralal Bhaket College Nalhati, Birbhum

